Phononic Frequency Combs

Phononic frequency combs (PFC) are the mechanical analogs of celebrated photonic frequency combs. These represent a newly documented physical phenomenon in the well researched physical domain of mechanical resonators [1]. The emergence of PFC is mediated by nonlinear modal coupling. Through a series of experiments using micromechanical resonators, various physical features of phononic frequency combs have been identified. These include drive parameters for comb operation, hysteresis for comb spectrum tailoring and nonlinear sensitivity to physical perturbations. My talk will describe the physics of phononic frequency combs and will emphasize how these combs could be foundational to the fields of materials science, molecular science and chemical science. In that respect, I will present our first conceptual demonstrations of material combs, molecular combs and chemical combs respectively. I will also showcase our recent demonstration of broadband phononic combs using optical tweezers [2]. The future work will be focused on the applications of phononic frequency combs in sensing, communications and quantum information science.


WebEx Link: https://ecu.webex.com/ecu/j.php?MTID=mb2f8a9a95ec24c9583c591b6931c071d

Individuals with disabilities who require accommodations in order to participate in any event at ECU are encouraged to contact the Department for Disability Support Services at 252-328-4802 (Voice/TDD) forty-eight hours prior to the start of any program. For information regarding the Colloquium, please call 252-328-6739.